Objective
To assess healing of wounds treated with Cyclical pressurized topical oxygen therapy (CPTOT)* using a novel multispectral near-infrared spectroscopy (NIRS) imaging device. Topical oxygen therapy has been shown to increase tissue oxygenation and sustain it over time, resulting in reduced infection, improved angiogenesis, and the formation of higher tensile strength collagen during wound healing. 1–3 Cyclical pressurized topical oxygen therapy (CPTOT) combines high concentration oxygen delivery with therapeutic level cyclical compression, which reduces edema, improves wound bed perfusion, and allows more efficient oxygen diffusion, nutrient exchange, and removal of inflammatory factors.

Methods
This retrospective case series included subjects with chronic ulcers who underwent treatment with CPTOT and evaluation with multispectral NIRS. A point-of-care multispectral NIRS imaging device** was used to measure tissue oxygenation (StO2) and temperature. CPTOT was self-administered by the patients in their own homes.

Results
Case 1 involves a 55-year-old male smoker, with a left lateral diabetic foot ulcer, present for 3 months. Case 2 involves a 76-year-old female with a right, medial ankle, late effect radiation wound, complicated by lupus and chronic venous insufficiency, present for 5 years. She had been receiving CPTOT for one year prior to the imaging shown in Figures 2a-2c., and her wound volume had decreased by 95% during that time. Her wound at the start of CPTOT treatment is shown in Figure 2a. NIRS imaging depicts the final 12 weeks of healing.

Conclusion
NIRS data provided objective measures of increases in StO2, allowing for quantitative assessment of oxygen delivery to the tissue.

References

*TW2O2, AOTI, Inc., Oceanside, CA
**MIMOSA Pro; MIMOSA Diagnostics, Inc., Toronto, ON
Poster assistance by Melodie Blakely, DPT, MS, CWS, Dir. Market Access, Value and RWE, AOTI Inc.