STATEMENT OF PURPOSE
This paper critically examines the Lauge-Hansen classification system and its original study. It assesses the system's accuracy and legitimacy as a teaching and surgical planning tool for ankle fractures, focusing on its predictive capabilities for injury patterns, soft tissue damage, reproducibility, and overall complications. The goal is to critically analyze the Lauge-Hansen classification and its utility in diagnosis and treatment planning through a narrative review of the current literature, as well as to identify a more reliable and precise method of classifying ankle fractures.

MATERIALS AND METHODS
A comprehensive literature search was conducted to gather articles that analyze the utility of the Lauge-Hansen classification system and the original Lauge Hansen studies. All articles in the English language were reviewed and a narrative summary performed.

CASE EXAMPLES
Above (left): 36 year old male who tripped and fell, twisting his ankle. Above (right): 27 year old female vet student who was kicked by an eland in the medial ankle.

There are several variants of ankle fractures that the Lauge-Hansen classification does not account for. Above (left) is a radiograph of a Bosworth type ankle fracture. This is when the proximal portion of the fibula fracture is locked behind the posterior tibial tubercle, usually rendering the fracture irreducible by closed means. The Lauge-Hansen classification cannot explain why this fracture pattern is irreducible.

Above (right) radiograph is an ankle fracture caused by a direct force, that cannot be classified by Lauge-Hansen.

PROPOSED CLASSIFICATION SYSTEM
Force + Associated Fractures
Type I (mostly external force)
Type II (mostly abduction force)
Type III (supination force)

A = no other fractures
B = medial malleolar fractures
C = posterior malleolar fractures

CONCLUSION
The Lauge-Hansen classification system's complexity contributes to its poor inter-observer reliability among medical professionals. The inability to replicate the original study's results highlights inherent flaws in its design, rendering it unsuitable for predicting injury patterns and soft tissue damage or for effective surgical planning. A more promising approach may involve developing a classification based on force and associated fractures.

REFERENCES
Using the proposed classification system, the above pictured fracture would be a 3BC. The supinator force sustained causing a spiral oblique fracture of the fibula gives the 3. The associated medial and posterior malleolar fractures give the B and C.