A Brief Case Report on Umbilical Cord Connective Tissue Allograft Application for Defect of the Achilles Tendon

By: Robert Parker DPM, FAENS, FACFAS, FAAMFAS, Naomi Lambert BS, Tyler Barrett

Background
Enthesopathies of the lower extremities are extremely common in adult populations regardless of athletic background. Achilles tendinitis (ositis), one of the most common, primarily affects patients over fifty. Enthesopathy can be caused by a loss of fibrillar structure secondary to edema or mineralization, which leads to calcification and ossification, diffuse inflammatory disease, or altered structure of collagen fibers leading to a thickened enthesis. The patient in this study is a 54-year-old female who presented with chronic enthesis pain mechanisms are poorly understood. It is common for surgeons to experience patients with significant retrocalcaneal exostosis and no pain as frequently as the reverse circumstance. The subject in this study presented with a retrocalcaneal exostosis of the right leg, severe pain, and declining tendon’s pain mechanisms are poorly understood.

Purpose
Standard care practices for Achilles tendinitis vary from over-the-counter anti-inflammatories or corticosteroid injections with functional rehabilitation therapy to surgical intervention in severe cases. Best practices are still widely debated as the Achilles tendon's pain mechanisms are poorly understood.

Methods
The procedure included the application of an umbilical cord tissue matrix, also known as Wharton’s Jelly, extracorporeal pulse-activated therapy (EPAT), and class IV laser therapy. At the initial visit, 2cc of CryoText, a minimally manipulated umbilical cord tissue allograft, was thawed as per laboratory guidelines in a 35-degree bath and transplanted along the at the Achilles insertion to the calcaneus, right foot, intratendinously and beneath the paratenon using MyLab 15.0 M Hz real-time diagnostic ultrasonography with a 4cm transducer head (figures 1, 2, 3). The patient was prepped with a standard sterile technique, careful to block local outside the area of the allograft. The allograft was strategically placed throughout the inflamed tissues. Before the application, the patient received EPAT at 11Hertz, 1.4 bars, for 3521 pulses and then scheduled twice weekly for class IV laser treatments three weeks providing photobiomodulation, (shown to increase microcirculation and ATP production and lower inflammatory markers) The patient was instructed to refrain from high-impact activity and fitted with a prefabricated pneumatic boot to wear for two weeks.

Results
The patient began treatment on 3/21/2023, reporting VAS pain level of 10/10. Upon follow-up examination on week 5 (4/25/2023), the patient reported a 50% improvement in functionality with VAS pain level of 2/10, noting most residual pain presented in the mornings. At the final exam on week 13 (6/20/2023), the patient reported VAS pain level of 0/10. Her only complaint being that the two weeks wearing the pneumatic boot caused acute hip pain. The patient will be tracked for any recurrence of pain over the next six months.

Conclusion
These preliminary observations on using umbilical cord structural tissue allografts as a tissue supplementation is better placed with real time ultrasonography, in combination with EPAT and class IV laser therapy, show promising improvement in patient-reported pain and functionality. The results align with the positive results in other literature regarding each separate element used in the care procedure as stand-alone applications. Future research will further evaluate the efficacy and safety of Wharton’s Jelly’s extracorporeal pulse-activated laser therapies and assist in defining dosage protocols.

Acknowledgements
The authors would like to thank Desiree Hormung, administrator, and the staff Stacy, Laura and Greta, at Parker Foot and Ankle for their contribution to data collection and filing.