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O bserving that patients with longer appointment delays tend to have higher no-show rates, many providers place a
limit on how far into the future that an appointment can be scheduled. This article studies how the choice of

appointment scheduling window affects a provider’s operational efficiency. We use a single server queue to model the
registered appointments in a provider’s work schedule, and the capacity of the queue serves as a proxy of the size of the
appointment window. The provider chooses a common appointment window for all patients to maximize her long-run
average net reward, which depends on the rewards collected from patients served and the “penalty” paid for those who
cannot be scheduled. Using a stylized M/M/1/K queueing model, we provide an analytical characterization for the opti-
mal appointment queue capacity K, and study how it should be adjusted in response to changes in other model parame-
ters. In particular, we find that simply increasing appointment window could be counterproductive when patients
become more likely to show up. Patient sensitivity to incremental delays, rather than the magnitudes of no-show probabil-
ities, plays a more important role in determining the optimal appointment window. Via extensive numerical experiments,
we confirm that our analytical results obtained under the M/M/1/K model continue to hold in more realistic settings.
Our numerical study also reveals substantial efficiency gains resulted from adopting an optimal appointment scheduling
window when the provider has no other operational levers available to deal with patient no-shows. However, when the
provider can adjust panel size and overbooking level, limiting the appointment window serves more as a substitute strat-
egy, rather than a complement.
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1. Introduction

Appointment scheduling systems are widely used by
healthcare providers to regulate their service capacity
and patient demand. Providing patients with pre-
scheduled appointments reduces the variability in
demand, and allows providers to better plan their
daily operations. However, not every patient will
show up for their scheduled services, creating the
commonly known patient “no-show” problem. Many
health service providers report high no-show rates
which can range from 23% to 34% (Dreiher et al. 2008,
Geraghty et al. 2007). No-shows leave appointment
slots wasted, and can result in significant financial
loss (Atun et al. 2005, Moore et al. 2001). No-shows
also break continuity of care, and may lead to poor
patient health outcomes (Nguyen et al. 2011, Schect-
man et al. 2008).
To mitigate the impact of no-shows, healthcare pro-

viders can try directly improving patient attendance
via sending reminders, providing transportation
assistance or charging no-show fees, but these inter-
ventions cannot completely eliminate no-shows (Guy
et al. 2012, Macharia et al. 1992). Some clinics still

faced 20% or higher patient no-show rates even after
implementing appointment reminder systems
(Geraghty et al. 2007, Hashim et al. 2001).
Facing high patient no-show rates, providers can

also consider adjusting their operations. One com-
monly adopted strategy is to overbook, that is, to
schedule multiple patients in one appointment slot to
hedge against the risk that some of them do not show
up. The overbooking strategy has been studied exten-
sively in the Operations Management (OM) literature;
see, for example, LaGanga and Lawrence (2007),
Muthuraman and Lawley (2008) and Zeng et al.
(2010). The second operational lever often used by
practitioners is to control the panel size, that is, the
number of patients a practitioner considers as her
“own” patients (Green and Savin 2008, Liu and Ziya
2014). This operational lever is motivated by observ-
ing that patients tend to have higher no-show proba-
bilities when their appointment delays are longer
(Dreiher et al. 2008, Gallucci et al. 2005, Liu et al.
2010). The appointment delay is the scheduling inter-
val, that is, the time between the day when a patient
requests for an appointment and the actual appoint-
ment date given to her. By limiting the panel size, a
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provider can ensure that her patients will not wait
too long for appointments and thus will be more
likely to show up.
Though panel size selection and overbooking are

widely used operational levers to cope with patient
no-shows, they may not be implementable in a large
number of practices. For instance, 1128 community
health centers in the U.S. are Federally Qualified
Health Centers (FQHCs) as of 2011, and they receive
government grants under the Public Health Service
Act (Shin et al. 2013, U.S. Department of Health and
Human Services 2014). In return for these grants,
FQHCs have to serve all patients regardless of their
ability to pay (Rural Assistance Center 2013). Conse-
quently, providers in these centers cannot “dismiss”
patients from or “reject” new patients to join their
panels like their counterparts in private practices. In
addition, providers in community health centers are
often salaried, meaning that their incomes do not
depend on the volume of patients they see and
there is little financial incentive for them to work
overtime. Overbooking, which often causes overtime
work, is therefore unwelcome from these providers’
perspectives and can be difficult, if not impossible, to
implement.
Without the options of overbooking or controlling

panel size, one important and practical operational
lever left to deal with appointment delay-dependent
patient no-shows is to limit the appointment schedul-
ing window. That is, patients are not allowed to make
appointments beyond a certain day from the day
when they make appointments. When there are no
appointments slots available within the appointment
window, providers usually have two ways to handle
additional patient requests if any. One option is to
simply advise patients to seek care elsewhere, for
example, urgent care centers nearby. This option
avoids overtime for providers. The other option is to
accommodate these patients via working beyond the
regular appointment hours. Although this option can-
not circumvent overtime, it is still considered more
acceptable by physicians than directly asking them to
overbook. The reasons are mostly psychological. First,
shortening the appointment scheduling window can
be naturally phrased as a means to reduce delays and
improve access to care, which are aligned well with
healthcare providers’ professional pursuit. Second,
overtime that may result from shortening the appoint-
ment window is not directly“built” into the system,
and thus is less “repelling.”
In our discussion with health care professionals, we

learned that controlling the appointment window is a
commonly-used operational lever in community
health centers. Some centers have the same rule for all
patients, while others may set different rules depend-
ing on patients’ no-show behaviors. For example, one

community health center in New York City faces
30–40% patient no-show rates; it prohibits “frequent
no-show offenders” (defined as patients missing
appointments more than five times in the past year)
from making appointments one day ahead, but it is
committed to serving these patients on an as-needed
basis (D. Rosenthal 2011, Columbia University, pers.
comm.). Similarly, Wingra Family Medical Center, a
large urban residency teaching clinic of the University
of Wisconsin Family Medicine Residence Program,
only permits patients who had demonstrated high
appointment adherence in the past to schedule
appointments in advance (DuMontier et al. 2013).
However, there seems to be no consensus on when
and how to use such an operational lever, and prac-
tices largely rely on trial-and-error approaches, often
resulting in inefficiency and suboptimal management.
It is the operational challenge faced by these practices
that motivates our research.
Limiting the appointment scheduling window

reduces appointment delays and thus no-shows, lead-
ing to more efficient use of appointment slots. How-
ever, an overly restrictive scheduling window may
leave too many patients unable to schedule their
appointments. These patients may either seek care
elsewhere or arrive at the clinic requiring service dur-
ing overtime, resulting in some form of penalty to the
provider either as loss of revenues, loss of goodwill
from patients or unplanned overtime work for staff.
Intuition seems to suggest that using a shorter
appointment window for patients with higher no-
show rates would increase efficiency, but is this intui-
tion correct? More generally, how does the choice of
appointment scheduling window affect a provider’s
operational efficiency? Furthermore, how much effi-
ciency gain can be achieved by adopting an optimal
appointment window, when practices may (or may
not) have the options to select panel size and overboo-
king level? This study seeks to answer these impor-
tant questions unaddressed in the previous OM
literature.
In this study, we develop stylized models as a sim-

plified version of reality, which allow us to draw
high-level managerial insights. This serves as a first
step to tackle the challenges faced by those providers
in using the appointment scheduling window as an
operational lever to deal with patient no-shows.
Using a single server queue model motivated by the
work of Green and Savin (2008) and Liu and Ziya
(2014), we are able to fully characterize the optimal
appointment window and show how this optimal
appointment window should be adjusted in response
to changes in other model parameters. These results
inform the conditions under which a longer appoint-
ment window may benefit practices more (or less). In
addition, we carry out extensive numerical studies,
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which are based on carefully chosen model parame-
ters, to strengthen our analytical findings. In particu-
lar, we investigate the efficiency gain of adopting an
optimal scheduling window when a practice has (or
does not have) the options of selecting panel size or
overbooking levels. Finally, we extend our analytical
model to consider a patient population with heteroge-
neous no-show behaviors.
Our work is particularly related to appointment

scheduling literature that develops operational strate-
gies to deal with patient no-shows. Depending on the
planning horizon, this literature can be grouped into
the work on intra-day scheduling and the work on
inter-day scheduling; see Cayirli and Veral (2003) and
Gupta and Denton (2008) for an in-depth review.
Intra-day scheduling concerns the best timing and

sequence of appointments within a given day in order
to optimize the trade-off between patient in-clinic
waiting and provider utilization (taking patient no-
shows into account); see, for example, Hassin and
Mendel (2008) and Robinson and Chen (2010). Inter-
day scheduling literature considers patient schedul-
ing in a multi-day planning horizon. The decision
maker determines how to allocate appointment
requests arising on the current day into future days;
see, for example, Patrick et al. (2008) and Liu et al.
(2010). Our work departs from the previous literature
in that we consider a fundamentally different decision
problem and focus on a more strategic level of deci-
sion making. We determine the size of the appoint-
ment window, that is, we consider how long in
advance an appointment should be allowed to be
scheduled, when patients exhibit delay-dependent
no-shows.
The two articles most relevant to ours are Green

and Savin (2008) and Liu and Ziya (2014). Similar to
ours, both articles use a single server queue to model
an appointment system where patient no-show prob-
abilities increase with appointment delays. However,
there are a number of crucial differences distinguish-
ing our work and theirs. The objective of Green and
Savin (2008) is to identify a panel size sustainable for
a practice to use Open Access, but our motivation is
to find a proper appointment window that maximizes
the efficiency. Accordingly, the decision variable in
Green and Savin (2008) is the patient demand rate,
while ours is the capacity of the appointment queue.
In terms of the analysis, Green and Savin (2008)
develop approximate methods to evaluate system
performance; we focus on deriving structural results
and obtain insights on what affect the optimal deci-
sions and the system performance. The models in Liu
and Ziya (2014) have an objective that shares a similar
flavor as ours. However, they seek to jointly deter-
mine the optimal panel size and overbooking level
which maximize the system efficiency. They do not

impose a limit on the appointment window. In
contrast, we study completely different operational
strategies to deal with no-shows by controlling the
appointment window. In addition, Liu and Ziya
(2014) only consider a homogeneous patient popula-
tion, whereas we also study a model in which patients
are heterogeneous in their no-show behavior. These
distinctions lead to different models and analyses,
and bestow new managerial insights.
The rest of the article is organized as follows. Sec-

tion 2 describes our model and the analytical results.
Section 3 presents our numerical study. Section 4 dis-
cusses the model extension with heterogeneous
patients. Section 5 provides the concluding remarks.
The proofs of all the analytical results can be found in
Appendix S1.

2. Model

We consider a single provider service system where
the provider can control the appointment scheduling
window. Our objective is to investigate how the size
of the scheduling window affects system perfor-
mance. Following the earlier work in Green and Savin
(2008) and Liu and Ziya (2014), we use a single server
queue as a stylized model to represent the appoint-
ment schedule of a provider. In the rest of the article,
we use the words patient(s) and customer(s) inter-
changeably.
Suppose that the provider has an established panel

of patients. Appointment requests from any patient in
this panel arise according to a Poisson process, inde-
pendent from those of others. Thus, the overall
demand to the provider also follows a Poisson pro-
cess. We assume that the overall demand rate is k > 0.
We further assume that patients have strong prefer-
ences on speedy access to care, and thus they will be
(offered and) scheduled to the earliest appointment
slot available. Patients may have other preferences for
appointments (e.g., time of day), but our model is
likely to be a reasonable approximation for reality if
most patients strongly desire shorter appointment
delays. Although academic literature on patient pref-
erences for appointment scheduling is relatively
scant, one study by Murray and Tantau (2000) sug-
gests that only 25% of patients who are offered same-
day appointments opt to see a physician at a later
time, supporting our assumption.
We keep a track of the appointment backlog of the

provider, and refer to it as the “queue.” This queue is
in fact a virtual waitlist of scheduled patients yet to be
seen by the provider. We assume that patients will
not cancel their appointments, and thus the new
appointment requests always join the queue from the
very end. This assumption usually works well for
community health centers, which motivate our

Liu: Optimal Appointment Scheduling Window
130 Production and Operations Management 25(1), pp. 128–142, © 2015 Production and Operations Management Society

 19375956, 2016, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pom

s.12401 by W
estern U

niversity O
f H

ealth, W
iley O

nline L
ibrary on [09/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



research. As Medicaid does not allow patients to be
billed for missed appointments, these practices do not
charge patients for failing to cancel scheduled
appointments early enough. As a result, patients
often“forget” about making cancellations.
To better interpret how our model approximates

reality, imagine for now that each appointment slot is
deterministic with length 1/l day. The actual service
time may have some variability, but it suffices to
assume that the provider can serve each patient
within one appointment slot. Or equivalently, we can
imagine that the provider has exactly l appointment
slots in a day, and she will not overbook.
Consider the following sequence of events in an

appointment scheduling system. During the day,
patients make requests for appointments. Because the
length of each appointment slot is deterministic, the
provider knows exactly when the next available
appointment is, and she will schedule the incoming
patient to that slot. As time passes, the provider
serves the patients on the schedule and makes the
queue shorter. When the provider is off duty, no
patients call in to join the queue and no patients are
served or leave the queue either; the queue remains
unchanged. Observing this, we can “drop” the non-
office hours of the provider and “coalesce” the office
hours together to consider a continuous queueing
process.
When patient appointment times come, they arrive

on time if they show up, but they may not show up
for their appointments. We assume that if there are j
patients in the system when a new patient makes the
appointment request, this new patient will be sched-
uled as the (j + 1)th patient in the system and show
up with probability pj 2 ½0; 1�. Motivated by empirical
studies which find that longer appointment delays
are positively correlated with high no-show probabili-
ties (see, e.g., Kopach et al. 2007, Norris et al. 2014),
we assume that pj � pjþ1 for j 2 {0,1,2,. . .}. Let
p1 ¼ limj!1 pj. To avoid a trivial scenario, we
assume that there exists 0 ≤ j < k such that pj [ pk,
which also implies that p0 [ 0. When the appoint-
ment queue length is j upon one patient’s arrival, then
this patient’s appointment delay is ⌊j/l⌋ days, where
⌊x⌋ represents the floor of a real number x. Thus, our
queue length-based no-show probability model can
be easily adapted to capture the appointment delay-
dependent no-shows.
Each scheduled patient who shows up brings in

one nominal unit of revenue. If a patient does not
show up, the provider cannot serve the next patient
right away because every patient is scheduled and they
will not come until their scheduled time slots. This
can also be thought of as that the provider is “serv-
ing” the appointment slot of this no-show patient
before moving to the next one. Without loss of

generality, we assume that if a patient does not show
up or there are no patients scheduled in the current
slot, the provider is able to fill in the slot by completing
one ancillary task. Examples of these ancillary tasks
include follow-up service coordination for a patient,
checking lab results, consulting with a patient’s other
providers and responding to a patient’s email or
phone call. These tasks may be billable to some (but
not all) payers and typically with a lower reimburse-
ment rate compared to that of direct patient care ser-
vice (Merrell and Berenson 2010). To capture this, we
assume that a revenue of ξ 2 [0,1) is generated for
each of these tasks (we call ξ the ancillary task revenue
rate). We further assume that patient arrivals preempt
ancillary tasks. That is, when an actual patient arrives,
physician stop doing ancillary tasks if any and turn
to serving the arriving patient. This assumption is
certainly reasonable when ancillary tasks are inter-
ruptible as many are, such as replying to patients’
emails. We also make this assumption to keep our
models tractable.
The service provider has control over the appoint-

ment scheduling window, that is, how far into the
future a new appointment can be scheduled. Since
the length of each appointment slot is deterministic,
this is equivalent to controlling the queue capacity,
which we denote by K. If the current length of the
appointment queue is less than K, the provider will
schedule new patients when they arrive. However, if
there are already K patients in the queue (including
the one in service), the provider will not schedule the
incoming patient. This action incurs a penalty cost of
h ≥ 0 per patient. This is to capture the fact that this
“rejected” patient may choose to seek care elsewhere
resulting in loss of revenues to the provider or she
may have to be accommodated using overtime work
at additional cost (more on this below). The goal of
the service provider is to maximize the long-run
average net reward, that is, revenue less cost, by
choosing a proper queue capacity K. Put into the ori-
ginal operational context, setting a queue capacity K
is equivalent to choosing an appointment scheduling
window to be K/l days.
Let T(K) denote the long-run average net reward

collected by the system. DefinePjðKÞ to be the steady-
state probability that upon the arrival of a new
appointment request, there are j appointments in the
system (including the ongoing service). To simplify
notations, we denote the expected revenue for an
appointment scheduled with j appointments ahead
by

qj ¼ pj þ ð1� pjÞn ¼ nþ ð1� nÞpj: ð1Þ

Thus, 0 � qjþ1 ¼ n þ ð1 � nÞpjþ1 � n þ ð1� nÞpj ¼
qj � 1. It follows that the limit of qj as j?∞ exists
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and we use q1 to denote this limit. Then, noting
that the arrival of appointment requests follows a
Poisson process, we can write

TðKÞ ¼ �
XK�1

j¼0

PjðKÞqj þ lnP0ðKÞ � �hPKðKÞ: ð2Þ

The first term on the right side of Equation (2) is
the revenue obtained from patients who showed up
for their scheduled appointments and ancillary tasks
completed in place of no-show patients. The second
term is the revenue obtained from ancillary tasks
when there are no scheduled patients in the queue.
To be specific, we note that the steady-state proba-
bility that the server has no scheduled customers
waiting is P0ðKÞ. That is, in the long run, P0ðKÞl
slots per day have no scheduled customers in them.
Since each of these slots will generate a revenue of ξ
from ancillary tasks, the long-run average reward
rate accrued from these slots is lnP0ðKÞ. The third
term is the penalty charge for arriving patients who
see K patients in the queue and get “rejected.” It
may also be used to model overtime cost. To see
that, consider a practice that will always accommo-
date patients who cannot be scheduled in normal
hours by seeing them during overtime hours. In the
long run, �PKðKÞ patients per day will be scheduled
for overtime work. In this case, h can be regarded as
the overtime cost per patient, and the last term in
Equation (2) represents the long-run average daily
overtime cost. The service provider’s problem can
be stated as the following optimization problem.

max
K2Zþ

TðKÞ; ðP1Þ

in which Zþ ¼ f1; 2; 3; . . .g. When the length of an
appointment slot is deterministic, the number of
scheduled appointments (including the one in ser-
vice which may be a no-show) in the process
described above can be modeled as an M/D/1/K
queue.
Although we can numerically calculate PjðKÞ’s in

an M/D/1/K queue, we do not have closed-form
expressions, and the problem is difficult to study ana-
lytically. To make the problem more tractable and to
derive structural insights, we assume that the service
times of appointment slots form a sequence of inde-
pendent and identically distributed (i.i.d.) exponen-
tial random variables with mean 1/l. In this case, the
appointment queue becomes an M/M/1/K queue,
which has a closed-form expression for PjðKÞ as
follows (Kulkarni 1995):

PjðKÞ ¼ qjPK
i¼0 q

i
; 8j ¼ 1; 2; . . .;K; ð3Þ

where q = k/l. Using Equations (1) and (3), we can
express (2) as

TðKÞ ¼ �
XK�1

j¼0

qjPK
i¼0 q

i
qj þ ln

1PK
i¼0 q

i
� �h

qKPK
i¼0 q

i

¼ �

PK�1
j¼0 qjrjPK
i¼0 q

i
þ ln� �h; ð4Þ

where rj ¼ h þ ð1� nÞpj for j = 0, 1, . . ., K�1 (more
on the practical meaning of rj below). Later, we will
numerically test whether the M/M/1/K queue is a
reliable approximation for the M/D/1/K queue for
our study purpose.

2.1. Optimal Capacity for the Appointment Queue
In this section, we derive the optimal capacity for the
appointment queue. For ease of discussion, we let

fðKÞ ¼
PK�1

j¼0 qjrjPK
i¼0 q

i
; K 2 Zþ; ð5Þ

and define f(0) = 0. Then, the net reward function
T(K) can be rewritten as

TðKÞ ¼ �fðKÞ þ ln� �h: ð6Þ
We can show the following results.

PROPOSITION 1. For any fixed k,l > 0, net reward T(K)
is a quasi-concave function of K over K 2 Zþ.
Furthermore, the largest maximizer K� is given by

K� ¼ supfK : K 2 Sg ð7Þ

where

S ¼ fK :
�fðK � 1Þ

l
� rK�1;K 2 Zþg:

Our intuition suggests that there exists a trade-off
between choosing a larger K vs. a smaller K. When the
appointment queue capacity is larger, fewer patients
are “rejected” but patient delay is longer leading to
more no-shows and diminishing efficiency. When K is
smaller, patients scheduled are more likely to attend
their appointments but the provider leaves a larger
proportion of patients unscheduled, resulting in
lower revenues and more non-scheduling penalties.
Proposition 1 confirms our intuition above and estab-
lishes that the net reward is a weakly unimodal func-
tion of the appointment queue capacity K. To give an
intuitive explanation, recall from Equation (1) that the
expected revenue from scheduling a patient with j
appointments ahead is pj þ ð1 � pjÞn. However, if
this patient is “rejected”, the revenue collected during
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the slot time which could have been scheduled for
this patient is ξ � h. As rj’s used in Equation (4) and
Proposition 1 can be rewritten as

rj ¼ hþ ð1� nÞpj ¼ ½pj þ ð1� pjÞn� � ðn� hÞ;

rj can be interpreted as the additional expected reve-
nue of scheduling a patient with j appointments
ahead upon her arrival rather than “rejecting” her.
Proposition 1 suggests that K� depends on such rev-
enue margins. More specifically, the daily net
reward T(K) can be decomposed into two parts, the
constant part being the revenue of just doing ancil-
lary tasks and not accepting any patients (i.e.,
lξ � kh), and the variable part being the “top-up”
revenue if accepting at most K patients in the sys-
tem (i.e., kf(K)). Then Proposition 1 says that if rK�1,
the marginal revenue of accepting the Kth patient
(who sees K � 1 patients ahead) into the system, is
larger than the long-run average top-up revenue per
appointment slot of allowing at most K � 1 patients
in the system, then the Kth patient should be
accepted.
As a direct result from Proposition 1, we obtain the

following Corollary, which identifies a necessary con-
dition for K� when it is finite.

COROLLARY 1. If K ¼ K� \1, then rK \ rK�1.

Corollary 1 implies that the optimal appointment
queue capacity occurs at some integer K where the
value of rK has a strict drop from rK�1. This result is
quite useful in devising simple algorithms to find K�.
In particular, to search for K� one only needs to check
the integers at which the value of rK has a strict
decrease. In addition, if patient no-show probabilities
depends on appointment delays (in days), that is, pj
changes only if ⌊j/l⌋ changes, then K� would be mul-
tiples of the daily service capacity l, automatically
making the optimal appointment window K�=l an
integer number (see more discussions in section 3).

2.2. Sensitivity Results
The last section investigates the property of the net
reward function and how to find the optimal appoint-
ment queue capacity K�. In this section, we study how
K� changes with respect to changes in other model
parameters, such as show-up probabilities fpjg and
appointment demand rate k. These sensitivity results
are useful for managers to adjust an appointment sys-
tem if the practice environment changes.
We first investigate how the adoption of a new

intervention (e.g., use of a reminder system) that is
expected to change no-show probabilities affects the
optimal appointment queue capacity. We use fpjg1j¼0

to denote the current show-up probabilities and

fp̂jg1j¼0 to denote the show-up probabilities post inter-
vention. We also let K̂� denote the optimal queue
capacity for the new system. We are interested in the
following question: if show-up rates increase under
the intervention, that is, p̂j � pj for j = 0, 1, 2, . . .,
does it mean that K̂� should be larger than K�?
Intuition might suggest that if patients have higher

show-up probabilities, then the system can use a
longer appointment queue to optimize the system
performance because patients are more “reliable.”
The argument is that, since patients are more likely to
attend the appointment given the same appointment
delay, the clinic can have a longer appointment queue
to keep scheduled patients. It is true that keeping a
longer appointment queue in a system with higher
patient show-up probabilities might still achieve an
equal or even better net reward compared to a system
with lower patient show-up probabilities, because
scheduled patients are more likely to come and the
non-scheduling penalty is smaller with a longer
appointment window. However, the objective here is
not to maintain or simply beat the same reward level
as a system with low patient show-up probabilities,
but rather to optimize the reward rate under high
patient show-up rates. Thus, the intuition above is
flawed, as demonstrated by the following example.

EXAMPLE 1. Suppose that the average daily capacity
of the clinic is 20, that is, l = 20 and appointment
arrival rate k = 17. Let pj ¼ ð0:9Þjþ1 for j 2 Z,
p̂0 ¼ 1, p̂1 ¼ 0:9, and p̂j ¼ ð0:9Þjþ1 for j 2 {2,3,. . .}.
Thus, p̂j � pj for all j 2 Z. For simplicity, we assume
that ξ = h = 0. Then, one can show that K� ¼ 5
while K̂� ¼ 4, meaning that the optimal appoint-
ment queue capacity is smaller even when patients
are more likely to show up.

Example 1 implies that following one’s intuition to
adjust appointment queue capacity can be counter-
productive. Then, one question arises naturally: what
conditions, if any, would ensure that K̂� � K�? A clo-
ser examination of Proposition 1 reveals that the key
determinant for K� is when rK�1, the additional
expected revenue of scheduling a patient rather than
“rejecting” her, stops being larger than f(K�1) (see
Equation (5)). Note also that f(K � 1) can be regarded
as a “weighted” average of rj’s for j = 0, 1, . . ., K�2.
Thus, one may contend that K� should depend more
on how rj’s (or equivalently pj’s) change in j, rather
than the magnitudes of pj’s. The ensuing discussion
will quantify this contention. Consider the following
condition. We define p�1 ¼ p̂�1 ¼ 0 for notational
convenience.

CONDITION 1. p̂j�1 � p̂j � pj�1 � pj for j = 0,1,2,. . ..
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Condition 1 requires that after the intervention, the
decrease in show-up probability with additional
appointment delays is smaller compared to that
under the original system. That is, patients are
less “sensitive” to additional delays in the new
system. Condition 1 also implies that p̂j � pj,
j = 0,1,2,. . .. With Condition 1, we can show the fol-
lowing results.

PROPOSITION 2. If condition 1 holds and other model
parameters are fixed, then K̂� � K�.

It is interesting to note that when h = 0, that is,
when the non-scheduling penalty is zero, the follow-
ing condition, slightly weaker than condition 1, guar-
antees Proposition 2 to hold.

CONDITION 2. pj�1p̂j � p̂j�1pj for j = 0,1,2,. . ..

Condition 2 requires that
p̂j
p̂j�1

� pj
pj�1

when

p̂j�1; pj�1 [ 0. This can be thought of as another form
to rank patient sensitivity to delays. Patients with p̂j’s
are less sensitive to those with pj’s because the per-
centage drop in show-up probabilities for p̂j’s with
additional appointment delays is smaller than that of
pj’s. These conditions will be useful in the discussion
of our numerical results in section 3.
We now study how the provider should adjust

the capacity of appointment queue in response to
changes in other model parameters, including the
demand level k, service rate l, non-scheduling pen-
alty rate h and ancillary task revenue rate ξ. We are
able to establish the following monotonic relation-
ships.

PROPOSITION 3. Other model parameters being fixed, the
optimal capacity for the appointment queue, K�, is

(a) decreasing in the demand rate k;
(b) increasing in the service rate l;
(c) increasing in the non-scheduling penalty rate h;
(d) increasing in the ancillary task revenue rate ξ.

In this study, we use the terms “increasing” and
“decreasing” to mean “non-decreasing” and “non-
increasing,” respectively. Proposition 3 states that as
the appointment demand increases, the service pro-
vider should be stricter and allow fewer outstanding
appointments. This might sound counterintuitive at
first. In response to a surge in demand, one might be
tempted to allow more appointments to benefit
from the increase. However, in fact, the increase in
demand is all the more reason to limit the size of the
appointment queue. Higher demand means less need
to accumulate customers in the queue since the
service provider has less trouble filling the empty

appointment slots. For a fixed appointment queue
capacity, higher demand means longer customer wait
time and thus higher no-show rates. Reducing
appointment queue capacity in this case leads to
shorter appointment delays and thus reduces no-
shows. The revenue gains outweigh the cost of having
more patients unscheduled due to reducing the
appointment window. In short, this result suggests
that for efficiency-maximizing service providers who
experience high demand, there may be fewer incen-
tives to offer appointments far into the future.
The other three monotonic relationships seem to

follow our intuition well. As the provider improves
her service rate, she can tolerate longer appointment
queues because customers will wait less and thus
have lower no-show rates. When the non-scheduling
penalty rate increases, there are more incentives to
accommodate customer requests and thus the pro-
vider inclines to have a larger appointment queue
capacity. When the reimbursement for value-added
tasks increases, the impact of no-shows on system
efficiency decreases and a longer appointment queue
appears more preferable to the provider.

3. Numerical Study

In this section, we present our numerical study and
results. The most important parameters in our numer-
ical study are patient no-show probabilities, and we
start by discussing how we chose these parameters
for our study in section 3.1.
Our numerical study has two main purposes. First,

we will check if the M/M/1/K model is a reliable
approximation for the M/D/1/K model in section
3.2. As discussed earlier, the M/D/1/K model
appears more realistic in representing an appoint-
ment system compared to the M/M/1/K model, and
our structural results in section 2 are all developed
based on the M/M/1/K model. Thus, we will first
examine whether Propositions 2 and 3 would con-
tinue to hold under the more realistic M/D/1/K
model. In addition, we will investigate how “close”
the M/M/1/K model approximates the M/D/1/K
model in suggesting the optimal appointment win-
dow, the key decision variable of interest to us.
The second purpose of our numerical study is to

answer an important question set forth earlier: how
much efficiency gain can be realized by adopting an
optimal appointment window when a practice may or
may not have other operational levers (e.g., panel size
selection and overbooking) available to deal with
patient no-shows? Insights to this question can inform
practitioners the conditions, if any, under which it is
worth considering putting a limit on the appointment
scheduling window. We discuss these insights in
sections 3.3 and 3.4.
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3.1. Patient No-Show Probabilities
We envision our model can be helpful for any
appointment-based ambulatory care services that
consider adjusting appointment scheduling windows
as a means to improve their operational efficiency. To
this end, we plan to test our model on a representative
set of patient no-show probabilities in ambulatory
care settings, rather than on a single organization’s
data. To obtain realistic and representative parame-
ters for patient no-show rates, we surveyed recent
healthcare OM as well as medical literature that
explicitly reports the relationship between patient no-
show probabilities and patient appointment delays in
ambulatory care services. This survey is by no means
comprehensive, but it gives some idea on the range of
patient no-show probabilities. Interestingly, we find
significant variation in patient no-show probabilities
reported in the literature. Figure 1 shows how patient
no-show probabilities change as appointment delays
increase in various settings, including intercity pri-
mary care clinics (Kopach et al. 2007), primary care
practices affiliated with academic medical centers
(Norris et al. 2014), OB/GYN care settings (Dreiher
et al. 2008), mental health facilities Gallucci et al.
(2005), health care referral services (Bean and Talaga
1995) and MRI facilities (Green and Savin 2008).
Among these settings, patient no-show probability for
same-day appointments ranges from 1% to 50%,
while that for an appointment 2 weeks from the
request date varies between 25% and 61%.

To capture such a wide spectrum of patient no-
show probabilities, we base our numerical experi-
ments below on patient no-show probabilities
reported in Kopach et al. (2007), Gallucci et al. (2005)
and the MRI facility of Green and Savin (2008), which
represent scenarios of high, medium and low no-
show probabilities, respectively. To be specific,
patient show-up probabilities pj in these scenarios are
expressed by the following parametric forms (8),
where j represents the appointment queue length at
patient arrival, l is the daily service rate and ⌊j/l⌋
gives the appointment delay in days.

pj ¼
0:5� e�0:017bj=lc; (Kopach et al. 2007)
1�½0:51�ð0:51�0:15Þe�bj=lc=9�; (Gallucci etal. 2005)
1�½0:31�ð0:31�0:01Þe�bj=lc=50�: (Greenand Savin 2008)

8<
:

ð8Þ

3.2. Comparison of M/M/1/K and M/D/1/K Models
In the comparison of M/M/1/K and M/D/1/K mod-
els, we use three different sets of patient show-up
probabilities given in Equation (8). We fix the daily
service rate l = 20, but vary the level of demand rate
k 2 {18,18.5,19,19.5,19.9,19.99} to study the impact of
system workload. We consider different combinations
of the ancillary task revenue rate ξ and the “rejection”
penalty h. Medical reimbursement data show that ξ is
usually smaller than 1. For instance, a 2013 non-facil-
ity Medicare fee for an 11–20 minute phone consulta-
tion is $19.25 (CPT code 99442), about one third of
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Figure 1 Survey of Patient No-Show Probabilities
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that for an office outpatient visit, which costs $53.25
(CPT code 99213). In our experiments, we allow
ξ 2 {0,0.3,0.5}. The parameter h can be understood as
the extra relative cost compared to revenue that the
provider would be willing to pay in order to accom-
modate a patient who would otherwise be rejected.
We consider h 2 {0,1.0,1.5}, corresponding to three
hypothetical cases: the provider is unaffected by
rejecting patients due to a full schedule; the provider
would be willing to pay an amount equivalent to the
revenue generated from serving the patient to avoid a
rejection; or the provider would be willing to pay 50%
more than an office visit revenue to avoid a rejection.
In total, we consider 162 =3 9 6 9 3 9 3 scenarios
for each of the two queueing models. Table 1 shows a
subset of the optimal appointment queue capacities in
these scenarios. We choose not to include results per-
taining to ξ = 0.3, h = 1.0 and k 2 {18.5,19.5} because
adding these results would not contribute much to
the discussion.
We can make a few important observations here.

First, under the M/D/1/K model, the optimal
appointment window becomes smaller when the
demand rate k increases with h and ξ fixed. However,
when h or ξ increases with other parameters fixed, the
optimal appointment window gets larger. These
are consistent with Proposition 3, proved under the
M/M/1/K setting.
In addition, one can numerically verify that accord-

ing to Condition 1, patients in MRI facilities of Green
and Savin (2008) are less sensitive to delays compared

to patients in Gallucci et al. (2005). When j ≤ 300 (see
Equation (8) for definition of j), sensitivity of patients
in Kopach et al. (2007) is higher than that in Green
and Savin (2008) but lower than that in Gallucci et al.
(2005). Based on this ranking information of patient
sensitivity as well as Proposition 2, it is not surprise to
see that K�

M;G � K�
M;K � K�

M;GS given the same set of k,
ξ and h. However, a more important observation is
that the same ordering results also hold under the M/
D/1/K system; that is, K�

D;G � K�
D;K � K�

D;GS for fixed
k, ξ and h. Combined with our discussion above, this
verifies that all of our structural results established
in the M/M/1/K setting continue to hold under the
M/D/1/K model, at least in the scenarios we tested.
We also note that all the optimal appointment

queue capacities are multiples of 20. Recall Corollary
1 which implies that the optimal appointment queue
capacity only occurs at the point where patient show-
up probability has a strictly positive decrease. In our
case, patient show-up probabilities drop only at the
queue capacities of multiples of 20, the daily service
capacity. For example, p20 ¼ p21 ¼ � � � ¼ p39 [ p40
(see Equation (8)). Therefore, it is not surprise to see
that the optimal appointment queue capacity only
takes values like 20,40,60. . . Indeed, this is a conve-
nient feature for converting the optimal appointment
queue capacity into the optimal appointment schedul-
ing window (in days). To do so, one only needs to
divide the optimal appointment queue capacity by
the daily service capacity, which is 20 in this case, and
always gets an integer number of days for the
appointment scheduling window.
To examine how “close” an M/M/1/K model

approximates an M/D/1/K system in making sug-
gestions for the optimal appointment scheduling win-
dow, we note that the M/M/1/K model is able to
make exactly the same suggestion as the M/D/1/K
model in 28 out of the 72 scenarios we studied. For
the rest of 44 cases, we evaluate the efficiency loss in
the M/D/1/K model due to using the optimal
appointment window suggested by the M/M/1/K
model. Specifically, the efficiency loss is evaluated as
100% � ½TðK�

DÞ � TðK�
MÞ�=TðK�

DÞ, where T(�) is the
reward function defined in Equation (2) for M/D/1/
K systems, and K�

M and K�
D, respectively represent the

optimal appointment queue capacities calculated
based on the M/M/1/K and M/D/1/K settings. The
average efficiency loss in these 44 scenarios is only
0.14% and the maximum efficiency loss is 0.97%, sug-
gesting that using the optimal appointment window
suggested by the M/M/1/K model in the M/D/1/K
model only leads to negligible efficiency loss. Thus,
the M/M/1/K model is a fairly accurate approxima-
tion for the more realistic M/D/1/K system in terms
of suggesting the optimal appointment scheduling
window.

Table 1 Comparison Results between the M/M/1/K and M/D/1/K
Models

(h,ξ) k K �
M ;K K �

M ;G K �
M ;GS K �

D;K K �
D;G K �

D;GS

(0,0) 18 140 60 ∞ 140 60 ∞
19 80 40 200 80 40 200
19.9 60 40 80 40 20 60
19.99 40 40 80 40 20 60

(0,0.5) 18 140 60 ∞ 140 60 ∞
19 80 40 200 80 40 200
19.9 60 40 80 40 20 60
19.99 40 40 80 40 20 60

(1.5,0) 18 ∞ 200 ∞ ∞ 160 ∞
19 280 100 ∞ 280 80 500
19.9 100 60 160 80 40 120
19.99 100 60 140 80 40 100

(1.5,0.5) 18 ∞ ∞ ∞ ∞ ∞ ∞
19 540 160 ∞ 420 160 ∞
19.9 140 80 200 120 60 160
19.99 140 60 180 100 40 120

The optimal appointment queue capacity is denoted by K �
X ;Y . The

subscript X 2 {M,D} represents the distributional assumption of service
times in the queueing model based on which the optimal queue capacity
is calculated. The subscript Y 2 {K,G,GS} indicates the data source of
patient show-up probabilities, which stands for Kopach et al. (2007),
Gallucci et al. (2005) and Green and Savin (2008), respectively.
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3.3. Efficiency Gains Resulted from Adopting K�
In this section, we study how much efficiency gain
can be achieved by adopting an optimal appointment
scheduling window when practices may or may not
use other operational levers.

3.3.1. Cases when Practice Cannot Adjust Panel
Size or Overbooking Level. This section deals with
the case in which a practice cannot adjust its panel
size or overbooking level. Our numerical experiments
use similar parameter settings as in section 2. Specifi-
cally, we use three different sets of patient no-show
probabilities defined in Equation (8). We fix l = 20
and vary k 2 {18,19,19.9,19.99}, ξ 2 {0,0.3,0.5} and
h 2 {0,1.0,1.5}. Different arrival rates k represent differ-
ent levels of workload ranging from lightly utilized to
extremely congested. We evaluate the efficiency gains
based on both M/M/1/K andM/D/1/K models.
For a given queueing model and a fixed set of

parameters, we assess the long-run average net
reward obtained by the system when patients can be
scheduled any time into the future, that is, we calcu-
late T(K) defined in Equation (2) for K = ∞. Then, we
evaluate the long-run average net reward when an
optimal appointment window is used. That is, we cal-
culate TðK�Þ in which K� is a maximizer to T(K). The
efficiency gain is defined as the percentage improve-
ment in long-run average net reward obtained due to
optimizing the appointment scheduling window, that
is, 100% � ½TðK�Þ � Tð1Þ�=Tð1Þ. A subset of the
representative results are shown in Table 2 (please
refer to Table S1 in the Online Appendix for all
numerical results).
From Table 2, we find that adopting an optimal

appointment scheduling window does not improve
efficiency much when patient demand is relatively

low compared to daily service capacity (see cases
when k = 18 or 19). However, when patient demand
increases, the efficiency gain can be substantial, more
than 40% in some cases. To further explore this, we
evaluate the probability of a random patient seeing no
more than K� patients ahead of her upon her arrival
to a system with an unlimited appointment schedul-
ing window, that is, a system with K = ∞. Detailed
results are presented in Table S2. We note that when
patient demand is low, most patients would have an
appointment delay shorter than K� even when there is
no restriction on the appointment window. In other
words, most patients are scheduled in the same way
as they would be in a system with the optimal
appointment window in place. Consequently, restrict-
ing the appointment window to be K� has limited
impact on system efficiency. On the contrary, when
patient demand is high, only a small percentage of
patients have an appointment delay shorter than K�

in a system with an unlimited appointment window.
As it turns out, adopting an optimal appointment
window in this case can effectively reduce appoint-
ment delay, control no-show rates and significantly
improve efficiency.
We also note that the efficiency gains become smal-

ler when the “rejection” penalty h or the ancillary task
revenue rate ξ is larger. These observations are in line
with what Proposition 3 suggests. As h or ξ increases,
K� would also increase and therefore TðK�Þ gets closer
to T(∞) resulting in a smaller efficiency gain. More
importantly, we observe that efficiency gains are more
sensitive to the changes in ξ than in h within the range
of parameter values we tested. This is likely due to
the fact that revenue differentials between patients
scheduled in different times are highly sensitive to
the value of ξ, and such revenue differentials are the

Table 2 Efficiency Gains Resulted from Adopting K� without Other Operational Levers

(h,ξ) k DEM ;K (%) DEM ;G (%) DEM;GS (%) DED;K (%) DED;G (%) DED;GS (%)

(0,0) 18 0.00 0.00 0.00 0.00 0.00 0.00
19 0.03 0.46 0.00 0.00 0.06 0.00
19.9 12.14 21.19 3.02 5.72 13.24 1.40
19.99 37.71 42.50 9.08 34.84 42.60 8.84

(0,0.5) 18 0.00 0.00 0.00 0.00 0.00 0.00
19 0.01 0.20 0.00 0.00 0.03 0.00
19.9 3.65 8.49 1.46 1.81 5.59 0.69
19.99 9.80 15.41 4.27 9.28 15.65 4.18

(1.5,0) 18 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.02 0.00 0.00 0.00 0.00
19.9 8.61 16.67 2.05 3.62 10.26 0.84
19.99 32.63 36.67 7.71 31.13 38.14 7.84

(1.5,0.5) 18 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00
19.9 2.02 5.48 0.73 0.81 3.51 0.27
19.99 7.63 11.82 3.20 7.69 12.87 3.38

DEX ;Y is the percentage improvement in long-run average net reward obtained due to optimizing the appointment scheduling window, that is,
100% � ½T ðK �Þ � T ð1Þ�=T ð1Þ. The subscripts X and Y have the same interpretations as those in Table 1.
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key driver for the optimal choice of appointment
scheduling window (see discussions in section 2.2).
As ξ increases, these revenue differentials drop
quickly, making it less effective to limit the appoint-
ment scheduling window.

3.3.2. Cases when Practices May Adjust Panel
Size and Overbooking Level. In this section, we
consider the cases in which practices can adjust their
panel size and overbooking level freely. We adopt the
same three sets of patient no-show probabilities as
above, and vary h 2 {0,1.0,1.5} and ξ 2 (0,0.3,0.5) in
our experiments. We consider both the M/M/1/K
and M/D/1/K queueing models. Given a queueing
model and a fixed parameter setup, we assume that
the practice first optimizes its panel size and overboo-
king level following the model of Liu and Ziya (2014),
which we briefly recapitulate below. In particular, the
practice solves the following optimization problem
first.

max
�;l[ 0

�
X1
j¼0

Pjð�; lÞqj þ lð1� qÞn� xðlÞ; ð9Þ

where k and l are decision variables representing
the demand rate (panel size) and service rate (over-
booking level) in the system, respectively. The vari-
able q = k/l is the traffic intensity, and Pjð�; lÞ
represents the steady state probability that an
incoming patient sees j patients ahead upon her arri-
val for a given pair of k and l. Note that the objec-
tive function above is essentially a special case of
Equation (2) with K = ∞ minus the last term x(l),
which represents the cost of providing the service.
We adopt the form xðlÞ ¼ a� ½ðl � MÞþ�2 from
Liu and Ziya (2014) in our experiments, and set the

regular daily capacity M = 20 patients per day and
the overtime cost parameter a 2 {0.2,2}. Thus, if the
practice chooses l to be larger than 20, it overbooks
l � 20 patients and incurs overtime cost x(l) per
day.
After the practice solves the optimization problem

(9) above and obtains the optimal patient demand rate
�� and daily service capacity l�, it seeks the optimal
appointment window K� given ð��; l�Þ. We evaluate
the percentage efficiency gains resulted from further
adopting an optimal scheduling window in systems
with the already optimized panel size and overboo-
king level. As it turns out, when the overtime cost
parameter a = 2, the practice never overbooks, that is,
it always set l� ¼ M ¼ 20. In this case, we can think
of the practice does not have an overbooking option
(due to its high overtime cost) but can freely adjust its
panel size. Table 3 shows a subset of the representa-
tive results and full results appear in Table S3.
From Table 3, we observe that once the panel size

(and the overbooking level) is optimized, the effi-
ciency gains by further adopting an optimal appoint-
ment scheduling window are limited (less than 1% in
all scenarios). To explain this, we evaluate based on
both queueing models, the service level defined as the
probability of patients seeing no more than K�

patients ahead upon their arrivals to a system with
the optimal panel size (and optimal overbooking
level) but an infinite appointment scheduling win-
dow. K� is the optimal appointment scheduling win-
dow that could be set given that the optimal panel
size (and overbooking level) is already in place. As
we see in Table 3, these service levels are at least 68%,
suggesting that optimizing the panel size (and the
overbooking level) can already control patient
appointment delay (and patient no-show rates) quite

Table 3 Performance Results of Adopting K� with Other Operational Levers

(h,ξ)
No-show
model

ðK �; ��;lÞ vs. ð1; ��;lÞ ðK �; ��;l�Þ vs. ð1; ��; l�Þ

DEM (%) aM DED (%) aD DEM (%) aM DED (%) aD

(0,0) K 0.29 0.86 0.16 0.86 0.64 0.80 0.50 0.77
G 0.97 0.81 0.43 0.73 0.81 0.84 0.85 0.68

GS 0.29 0.80 0.06 0.92 0.15 0.87 0.20 0.86
(0,0.5) K 0.09 0.86 0.05 0.86 0.17 0.82 0.12 0.80

G 0.43 0.81 0.19 0.73 0.36 0.84 0.38 0.68
GS 0.14 0.80 0.03 0.92 0.07 0.87 0.10 0.86

(1.5,0) K 0.00 1.00 0.00 1.00 0.04 0.99 0.04 0.99
G 0.13 0.96 0.06 0.98 0.09 0.97 0.16 0.97

GS 0.05 0.96 0.00 1.00 0.01 0.99 0.04 0.97
(1.5,0.5) K 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

G 0.00 1.00 0.00 1.00 0.00 1.00 0.02 0.99
GS 0.00 0.99 0.00 1.00 0.00 1.00 0.00 0.99

DEX and aX represent the percentage efficiency gain and the service level, respectively. The service level is defined as the probability of patients seeing
no more than K � patients ahead upon their arrivals to a system with the optimal panel size (and optimal overbooking level) but an infinite appointment
scheduling window. The symbols K, G and GS as well as the subscript X 2 {M,D} have the same interpretation as those in Table 1. The third grand
column, in which l = 20, presents the cases without an overbooking option.
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well. Further setting a limit on the appointment
window seeks to achieve a similar goal of influencing
appointment delays experienced by patients, and thus
can only exert a limited impact.

3.4. Efficiency Gains Due to Jointly Optimizing
All Operational Levers
To further explore the efficiency gain by controlling
the appointment scheduling window, we consider
cases when practices can jointly optimize all opera-
tional levers: panel size, overbooking level and
appointment scheduling window. Specifically, the
practice solves the following optimization problem.

max
�;l[ 0;K2Zþ

�
XK�1

j¼0

Pjð�; l;KÞqj þ lnP0ð�; l;KÞ

� �hPKð�; l;KÞ � xðlÞ;
ð10Þ

in which Pjð�; l;KÞ represent the steady-state queue
length for a given triplet of (k,l,K). We adopt the
same three sets of patient no-show probabilities as
above, and vary h 2 {0,1.0,1.5}, ξ 2 (0,0.3,0.5) and
a 2 {0.2,2} in our experiments. For convenience, we
let ðK��; ���; l��Þ represent the jointly optimal sched-
uling window, panel size and overbooking level to
(10). We evaluate the percentage efficiency gains
due to using ðK��; ���; l��Þ compared with using
ðK�; ��; l�Þ obtained in section (3.3.2) (see detailed
results in Table S4). Except for the cases when h = 0,
the efficiency gains due to joint optimization are
almost zero. When h = 0, that is, when providers are
not affected by “rejecting” patients due to a full
schedule, the jointly optimal strategy appears to be
using a very large panel (ideally containing an infi-
nite number of patients) and adopting a very small
appointment window (ideally one day), so that there
are always patients in the system whose appoint-
ment delay is minimal yielding the maximal possi-
ble revenues. Even with such an unrealistic strategy,
the M/D/1/K model estimates that the largest effi-
ciency gain is no more than 5% in all cases we
tested. Therefore, taking together with our previous
numerical results, we may conclude that optimizing
the appointment scheduling window serves more as
a substitute, rather than a complement, to optimiz-
ing the panel size (and overbooking level).

4. Extension to Heterogeneous
Customers

The previous sections deal with models with homoge-
neous customers. However, customers with different
personal characteristics may differ in their no-show
probabilities. For instance, patients who had missed
their prior appointments tend to have a higher chance

of breaking their future appointments (Norris et al.
2014). Observing this phenomenon, providers may
use different appointment windows for patients
depending on their no-show behaviors (D. Rosenthal
2011, Columbia University, pers. comm., DuMontier
et al. 2013). In this section, we consider a simple styl-
ized model with heterogeneous customers to study
such decision making. In particular, we assume that
there are two types of patients who differ in their arri-
val rates and show-up probabilities. Type i patients
join the queue according to a Poisson process with
rate �i for i = 1,2. The probability that a type i patient
will show up given j patients ahead of her upon her
appointment request is pij. Similar to our previous
models, we assume that these show-up probabilities
decrease as patient appointment delay increases, that
is, pij � pi;jþ1 for i = 1,2 and j = 0,1,2,. . .. We also
assume that the provider knows exactly the patient
type when a patient arrives, and she may use patient
type-specific appointment windows. That is, the pro-
vider will not schedule type i patients if there are
already Ki patients (regardless of their types) in the
system, where K1 can be different from K2.
Except for the differences above, these two types of

customers are the same in other aspects and model
assumptions are also similar to those of the M/M/1/
K model with homogeneous customers considered in
section 2. The service times of each customer are i.i.d.
exponential random variables with mean 1/l. If the
scheduled customer does not show up for an appoint-
ment slot or there is no customer scheduled for that
slot, the provider is able to fill it by an ancillary task
which yields a reward ξ 2 [0,1). Each patient served
brings in one nominal unit of reward and each
unscheduled patient incurs a cost h to the system. The
provider’s objective is to maximize the long-run aver-
age net reward by choosing K1 and K2 appropriately.
One can show that for this stylized model, the long-

run average net reward given ðK1;K2Þ, denoted as
TðK1;K2Þ, has a closed-form expression. To be spe-
cific, let q ¼ ð�1 þ �2Þ=l, qi ¼ �i=l, wi ¼ �i=ð�1 þ
�2Þ, and rij ¼ h þ ð1 � nÞpij for i = 1,2, and
j = 0,1,2,. . .. We need to consider two cases sepa-
rately: K2 � K1 and K1 [ K2. We use TðK1;K2jK2

� K1Þ to represent the long-run average net reward
collected by the system given that K2 � K1, that is,
when the service provider allows a longer appoint-
ment scheduling window for type 2 customers. For
convenience, we write T̂ðK1;K2Þ ¼ TðK1;K2jK2 � K1Þ.
Similarly, we write TðK1;K2jK1 � K2Þ as �TðK1;K2Þ.
Then, by modeling the number of scheduled appoint-
ments in the system as a Continuous Time Markov
Chain for each of the two cases, we can obtain the
following expressions for T̂ðK1;K2Þ and �TðK1;K2Þ,
respectively. Detailed derivations are presented in
Appendix S2.

Liu: Optimal Appointment Scheduling Window
Production and Operations Management 25(1), pp. 128–142, © 2015 Production and Operations Management Society 139

 19375956, 2016, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pom

s.12401 by W
estern U

niversity O
f H

ealth, W
iley O

nline L
ibrary on [09/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



T̂ðK1;K2Þ

¼
ð�1þ�2Þ

PK1�1
j¼0 qjðw1r1;jþw2r2;jÞþ�2qK1

PK2�1
j¼K1

qj�K1

2 r2;jPK1

j¼0q
jþqK1

PK2�K1

j¼1 qj2

þln�ð�1þ�2Þh;

and

�TðK1;K2Þ

¼
ð�1þ�2Þ

PK2�1
j¼0 qjðw1r1;jþw2r2;jÞþ�1qK2

PK1�1
j¼K2

qj�K2

1 r1;jPK2

j¼0q
jþqK2

PK1�K2

j¼1 qj1

þln�ð�1þ�2Þh:

Now we can evaluate the long-run average net
reward TðK1;K2Þ for any ðK1;K2Þ using

TðK1;K2Þ ¼
�TðK1;K2Þ if K1 [K2;
T̂ðK1;K2Þ if K2 �K1:

�

And the service provider’s problem can be formu-
lated as

max
K1;K22Zþ

TðK1;K2Þ: ðP2Þ

As discussed earlier, the service provider may either
use the same appointment window for them, or dif-
ferentiate the appointment windows based on
patient type. Below we consider these two cases sep-
arately.

4.1. Case that Requires K1 = K2

When the service provider choose to use the same
appointment window, she simply sets K1 ¼ K2 as a
constraint in problem (P2). The arrivals of both types
of patients follow independent Poisson processes
with rates �1 and �2, respectively. Thus, the joint arri-
val process is also a Poisson process, with rate
�1 þ �2. The probability that an arriving patient
belongs to type i is wi (see Theorem 5.6 in Kulkarni
1995). Therefore, for a random arrival who sees j
patients ahead of her, her expected show-up probabil-
ity is �pj ¼ w1p1j þ w2p2j, j = 0,1,2,. . .. When K1 ¼ K2,
the number of patients registered in the system
becomes an M=M=1=K1 queue. In this case, the model
with heterogeneous customers simply reduces to a
model with homogeneous customers where k and pj
are replaced by �1 þ �2 and �pj, respectively. There-
fore, all results derived in section 2 apply to this case.

4.2. Case that Allows K1 6¼ K2

When the provider can freely choose appointment
windows, intuition suggests that the provider
would be better off by offering a longer appointment

scheduling window for customers who have
higher show-up probabilities, because these “better
behaved” customers can be held longer in the system
while still having the same or higher show-up proba-
bilities. Indeed, such a scheduling paradigm is widely
adopted in practice to deal with frequent no-show
offenders by offering them very short appointment
windows (see D. Rosenthal 2011, Columbia Univer-
sity, pers. comm., DuMontier et al. 2013). However,
we have seen that the intuition above fails when cus-
tomers are homogeneous (or equivalently, when the
provider does not know the patient type information
but can only treat every patient as a random draw
from a patient population with a common no-show
probability distribution). In that case, solely improv-
ing customer show-up rates does not guarantee a
larger appointment scheduling window to be optimal
(see Example 1). Customer sensitivity to delays plays
a more important role there. Could customer sensitiv-
ity to delay play a similar role when customers are
heterogeneous in their no-show behavior and the pro-
vider knows exactly their type?
The following proposition provides some answer to

the question above. It actually points to a different
result to the homogeneous case. When patients are
heterogenous and the provider knows exactly their
type, it would be optimal for the provider to set a
longer appointment window for patients with higher
show-up probabilities, irrespective of their sensitivity
to delays.

PROPOSITION 4. If p1j � p2j for j = 0,1,2,. . ., then there
exists an optimal pair of the appointment queue capacities
ðK�

1;K
�
2Þ such that K�

1 � K�
2.

To give an intuitive explanation for Proposition 4,
imagine that the provider sets an appointment win-
dow K1 for type 1 patients who have lower show-up
probabilities. Suppose that at this moment, the queue
length is shorter than K1. If a type 1 patient arrives,
the provider would accept this patient to the system.
If instead a type 2 patient comes at this moment, the
provider seems to have no reason to “reject” this
patient as this patient has a higher show-up probabil-
ity than type 1 patients. Following this logic, the pro-
vider should set K2 at least the same as K1.
In the proposition above, p1j � p2j is the only

required condition for this ordering result to hold. It
actually holds independently of all other model
parameters, such as customer arrival rates �1 and �2

and provider service rate l. Put into the context of
health care management, Proposition 4 gives a robust
ordering result that does not depend on patient mix
or practice size, indicating that as long as one group
of patients have higher show-up rates, allowing a
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longer appointment window for them can lead to
better system performance.

5. Conclusion

Patients’ no-show behavior presents a significant
problem faced by many health care providers. Since
patient no-show rates usually increase with their
appointment delays, one commonly-adopted opera-
tional strategy by providers is to control the length of
the appointment window. By limiting patients from
making appointments too far away into the future,
the provider reduces patient appointment delays and
thus no-show rates. Although there is a growing body
of literature on various operational strategies to deal
with patient no-shows, little is known about the
impact of varying appointment scheduling windows
on a provider’s operational efficiency. This study is
directed to fill this knowledge gap.
The key trade-off here is between the efficiency loss

due to high no-show rates following from allowing a
longer appointment window and the “penalty”
resulted from an overly restrictive appointment win-
dow driving too many patients unable to schedule
their appointments. We capture this trade-off by
using a single server queue to model the appoint-
ments registered in a provider’s work schedule. The
capacity of the queue serves as a proxy of the length
of the appointment window. The provider wants to
set a common appointment window for all patients,
who have higher no-show probabilities when their
appointment delays are longer, to maximize her long-
run average net reward. Using a stylized M/M/1/K
queueing model, we provide analytical characteriza-
tions for the optimal appointment queue capacity,
and study how the optimal scheduling window
should be adjusted in response to changes in other
model parameters. Through extensive numerical
experiments, we confirm that our analytical results
continue to hold in more realistic settings. In addition,
one particularly useful message from our numerical
study to practitioners is that adopting an optimal
appointment scheduling window can lead to substan-
tial efficiency gains if the provider has no other opera-
tional levers at hand to deal with patient no-shows.
However, when the provider can adjust panel size
and overbooking level, limiting the appointment
scheduling window serves more as a substitute strat-
egy, rather than a complement.
Our work points to several directions for future

research. First, our model extension studies a single
server queue with two types of patients differing in
their no-show probabilities. The provider knows the
type of each incoming patient, and may set different
appointment windows depending on patient type.
These patient type-specific appointment windows,

however, are static over time and independent of the
system state. A dynamic admission policy which
depends on the current patient composition in the
queue or a policy that sets a limit on the number of
each type of patients in the system holds the promise
of further improving system efficiency. However,
these variations would lead to completely different
and likely more challenging optimization problems,
which we leave for future research. Second, in our
model with heterogeneous patients, we assume that
providers can perfectly segment patients based on
their no-show probabilities. However, misclassifica-
tion errors may occur in reality and it is important to
study how such errors can affect our analysis and
results. Third, our model is stylized in nature mainly
for deriving managerial insights and more research is
needed to develop decision support tools for practical
use. For example, patients may have stronger prefer-
ences for convenient times of day rather than shorter
appointment delays, and thus they may not accept
the earliest available appointment. In addition to no-
shows, patients may cancel in advance or reschedule
their appointments. These patient behaviors can leave
“holes” in the appointment queue. In this case, a first-
come-first-served queue may not be an accurate rep-
resentation. Thus, one avenue for future research is to
examine the connection between the appointment
window size and the operational efficiency in a more
realistic setting. Analytical study based on stylized
queueing models may be difficult, but simulation
experiments are likely to yield useful results.
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